Characterization of Branched Polydisperse Polymers. Influence of Solvents on the Branching Parameters ZBIGNIEW DOBKOWSKI, Institute of Industrial Chemistry, Rydygiera 8, 01-793 Warszawa, Poland #### **Synopsis** The influence of solvents on the branching degrees G (the ratio of intrinsic viscosities) and g (the ratio of radii of gyration), and on the branching exponent b in equation $G=g^b$ has been estimated using the recently reported equations for branched polymers. The following relations have been found: $G < G_0$, $\bar{g}_x = \bar{g}_{x0}$, and $b > b_0$, where subscripts 0 and x denote the unperturbed (or theta) conditions and the type of average value for polydisperse polymers, respectively. Hence the expansion coefficients of branched and linear macromolecules are related by $\alpha_{n,br} < \alpha_{n,lin}$ and $\alpha_{abr} = \alpha_{alin}$. #### INTRODUCTION Branched polymers are usually characterized by the following branching degrees $^{1\mbox{-}10}$ $$G = [\eta]_{\rm br}/[\eta]_{\rm lin} \tag{1}$$ and $$g = \langle r^2 \rangle_{\rm hr} / \langle r^2 \rangle_{\rm in} \tag{2a}$$ or $$g = \langle s^2 \rangle_{\rm br} / \langle s^2 \rangle_{\rm in} \tag{2b}$$ for the same molecular weight (M) of branched (br) and linear (lin) molecules, where $[\eta]$, $\langle r^2 \rangle$, and $\langle s^2 \rangle$ are the intrinsic viscosity, mean square end-to-end distance and mean square radius of gyration of macromolecules, respectively. The branching degrees G and g are related by $$G = g^b \tag{3}$$ where b is the branching exponent dependent above all on the type of branching (star, comb, or random). The reported values of b are in the range from 0.5 (the theoretical value of Zimm and Kilb for starlike branching²) to 1.5 (the theoretical value derived with the assumption that the Flory constants for branched and linear macromolecules are equal, $\Phi_{\rm br} = \Phi_{\rm lin}$; cf. Ref. 5). Journal of Applied Polymer Science, Vol. 30, 355–362 (1985) © 1985 John Wiley & Sons, Inc. CCC 0021-8995/85/010355-08\$04.00 Since the theoretical considerations are based on the random flight statistics of macromolecule, the unperturbed values should be taken for $[\eta]$, $\langle r^2 \rangle$, or $\langle s^2 \rangle$ in eqs. (1)–(3). Hence, the branching degrees G_0 and g_0 for the unperturbed conditions can be defined as $$G_0 = [\eta]_{0,\text{br}}/[\eta]_{0,\text{lin}} \tag{4}$$ and $$g_0 = \langle \mathbf{r}^2 \rangle_{0,\text{br}} / \langle \mathbf{r}^2 \rangle_{0,\text{lin}} \tag{5a}$$ or $$g_0 = \langle \mathbf{s}^2 \rangle_{0,\text{br}} / \langle \mathbf{s}^2 \rangle_{0,\text{lin}} \tag{5b}$$ The theoretical unperturbed conditions for the second virial coefficient A_2 = 0 and the experimental theta conditions can be distinguished, as reviewed by Small.⁴ However, we assume that according to the Flory theory we have $$G_0 = G_{\Theta} \tag{6}$$ and $$g_0 = g_{\Theta} \tag{7}$$ where subscripts 0 and Θ denote the unperturbed and theta conditions, respectively. In fact, the theta temperatures for linear and randomly branched polymers are very close or identical.⁶ In considerations of influence of solvents on the branching degrees G and g, the expansion coefficients $\alpha_{\rm br}$ and $\alpha_{\rm lin}$ for branched and linear macromolecules in solution should be taken into account. Then we have $$G = (\alpha_{\eta, \text{br}}^3 / \alpha_{\eta, \text{lin}}^3) G_0 \tag{8}$$ and $$g = (\alpha_{\rm rhr}^2/\alpha_{\rm rlin}^2)g_0 \tag{9a}$$ or $$g = (\alpha_{\rm sbr}^2/\alpha_{\rm slin}^2)g_0 \tag{9b}$$ where $\alpha_{\eta}^{\gamma} = [\eta]/[\eta]_0$, $\alpha_r^2 = \langle r^2 \rangle/\langle r^2 \rangle_0$, $\alpha_s^2 = \langle s^2 \rangle/\langle s^2 \rangle_0$, and $\alpha_{\rm s,lin} = \alpha_{\rm r,lin}$. A lot of discrepancies exist, if the theoretical and experimental data are compared with eqs. (8) and (9). For example $G > G_0^{11}$ $G = G_0^{6,12-14}$ or $G < G_0^{6,8,11,15-19}$ have been reported, and $g > g_0^{3,7,8,20-22}$ or $g = g_0^{12,23-25}$ have theoretically or experimentally been found, or have been assumed. It has also been reported that the exponent b in eq. (3) depends on the solvent, according to the following relation^{1,24,26,27}: $$b = 2 - a \tag{10}$$ where a is the Mark-Houwink exponent. Hence, it should be $b < b_0$ and $b_0 = 1.5$. Some authors, however, found that $b > b_0$ with b_0 about 0.5–1.0.^{4,8,15,22} Mostly, the constant value of b as independent of the solvent quality has been applied,^{4,5,24,28} which might be supported by some experimental reports, (cf. Ref. 29). It has recently been suggested 10 that the influence of solvents on the branching parameters can be taken into account using the following general relationship for the average branching degree g: $$\bar{g}_{x,f} = [(f/2 - 1)\bar{n}_{bx,f} + 1]^k$$ (11) where f is the functionality of branching, \overline{n}_b is the average number of branch points, and x refers to the type of average values (x = n for number and x = w for weight averages). The exponent k in eq. (11) is given by the following relation¹⁰: $$k = -a/(ba_{tb}) (12)$$ where a is the Mark–Houwink exponent, b is the branching exponent defined by eq. (3), and a_{tb} is the branching exponent in the power dependence of the glass transition temperature T_g on molecular weight, polydispersity, and branching. 9,10,30 In the present work the above-mentioned suggestion¹⁰ is considered and the influence of solvents on G, g, and b is discussed. ### DISCUSSION ### Branching Degree g_v The new branching degree g_w based on gel permeation chromatography (GPC) and viscometric (VIS) measurements, has recently been defined^{31,32} as $$g_v = \overline{M}_{v,GPC} / \overline{M}_{v,VIS} \tag{13}$$ where $\overline{M}_{v,\text{CPC}}$ and $\overline{M}_{v,\text{VIS}}$ are the viscosity average molecular weights determined by GPC and VIS, respectively. This branching degree is related to the other branching parameters by the relation^{9,32} $$G = g_v^{-a} \tag{14}$$ where a is the Mark-Houwink exponent. Moreover, it has been found that the number average number of chain ends per molecule $\overline{\omega}_n$ is related to g_v by $$\overline{\omega}_n = 2ga_{tb} \tag{15}$$ where a_{tb} is obtained from the T_e measurements.³⁰ It is evident that the average number of chain ends per molecule $\overline{\omega}_n$ is a structural parameter independent of solvent. Since the value of a_{tb} is also independent of solvent, we have from eq. (15) that $g_v = \text{const}$ for different solvents. # Branching Degree G It results immediately from eq. (14) that the branching degree G depends on the solvent quality, characterized by the Mark–Houwink exponent a. An example for polycarbonate is shown in Table I. It is evident that the highest values of G are obtained for the theta solvent, and $G < G_0$. However, differences between values of G for different solvents are rather small (cf. Table I). This is probably the reason that the experimental values of G, obtained with some errors, are sometimes considered as solvent independent.^{12,13} The results of Orofino and Wenger¹¹ that $G/G_0 = 1.03$ in benzene at 25°C and $G/G_0 = 1.04$ in toluene at 30°C for models of polystyrene are opposed by the same authors by $G/G_0 = 0.97$ in cyclohexane at 40°C. The relation $G < G_0$ has been confirmed by many other authors.^{6,8,15-19} ## Branching Degree g Combining eqs. (3) and (14), we obtain $$g = g_v^{-a/b} \tag{16}$$ It has previously been found9,10,33 that $$b = a_m / a_{mbG} \tag{17}$$ where a_m and a_{mbG} are the exponents for M and for branching degree G, respectively, in the power dependence of the zero shear rate melt viscosity η_0 on molecular weight, polydispersity, and branching, 9,10,33 written as $$\eta_0 = A_m \overline{M}_x^{a_m} q^{a_{mpx}} G^{a_{mbG}} \tag{18}$$ TABLE I Dependence of Branching Degree G on the Solvent Quality | Sample | Branching degree g_v^a | Branching degree G from eq. (14) | | | | | |--------|--------------------------|------------------------------------|----------|----------|----------|----------| | | | a=0.50 | a = 0.60 | a = 0.70 | a = 0.76 | a = 0.82 | | DE-16 | 1.02 | 0.990 | 0.988 | 0.986 | 0.985 | 0.984 | | DEM-1 | 1.06 | 0.971 | 0.966 | 0.960 | 0.957 | 0.953 | | DE-2 | 1.10 | 0.953 | 0.944 | 0.935 | 0.930 | 0.925 | | DE-4 | 1.20 | 0.913 | 0.896 | 0.880 | 0.871 | 0.861 | | DE-8 | 1.25 | 0.894 | 0.875 | 0.855 | 0.844 | 0.833 | | DE-13 | 1.29 | 0.880 | 0.858 | 0.837 | 0.824 | 0.812 | | DE-7 | 1.68 | 0.772 | 0.733 | 0.695 | 0.674 | 0.654 | ^a The experimental values of g_v are taken from Ref. 33. If the branching degree g_v instead of G is applied in eq. (18), the branching exponents are related by $$a_{mbG} = -a_{mbgv}/a \tag{19}$$ Then, combining eqs. (17) and (19), we obtain $$b = -a \cdot a_m / a_{mbev} \tag{20}$$ Thus the branching exponent b depends on the solvent through the Mark-Houwink exponent a; the values of a_m and a_{mbgv} are solvent-independent. Combining eqs. (16) and (20), we have $$g = g_v^{ambgv/am} \tag{21}$$ Since all magnitudes on the right-hand side of eq. (21) are solvent-independent, the branching degree g is also independent of the solvent. Thus $$g = g_0 \tag{22}$$ is found. This result contradicts the relations $g > g_0$ or $\alpha_{s,br} > \alpha_{s,lin}$ [cf. eq. (9b)], calculated by Kron and Ptitsyn²⁰ and Berry and Orofino.²¹ It seems that their assumptions made for theoretical calculations performed on model branched structures are not satisfied for the real branched polymers. On the other hand, the theoretical considerations of Fixman²³ have led to the conclusion that branching has little effect on α_s , which implies $\alpha_{s,br} = \alpha_{s,lin}$, and then $g = g_0$. Moreover, starting from eq. (11) and substituting $$\overline{n}_{brf} = (\overline{\omega}_r - 2)/(f - 2) \tag{23}$$ (cf. Ref. 10), we obtain $$\overline{g}_r = (\overline{\omega}_r/2)^k \tag{24}$$ independently of functionality of branching f. Then, combining eqs. (12) and (20), we find that $$k = a_{mbev}/a_m \cdot a_{tb} \tag{25}$$ Thus, k is the solvent-independent exponent, and, in turn, \bar{g}_x in eq. (24) is also independent of the solvent, i.e., $$\bar{g}_{r} = \bar{g}_{r0} \tag{26}$$ It means that the branching degree g is independent of the solvent for monodisperse and polydisperse polymers, independently of functionality of branching. # Branching Exponent b The branching exponent b depends on the solvent quality according to eq. (20), which can be written as $$b = D \cdot a \tag{27}$$ where the constant $D=-a_m/a_{mbgv}$ is independent of the solvent and can be determined from the zero-shear-rate melt viscosity dependence on molecular weight, polydispersity, and branching¹⁰ [cf. eqs. (17)–(20)]. If the branching exponent b' for a given solvent characterized by the Mark–Houwink exponent a' is known, the values of b for other solvents can easily be found from $$b = (b'/a')a \tag{28}$$ If the known value is $b' = b_0$ for the unperturbed conditions, we have $$b = 2b_0 a \tag{29}$$ Hence, values of b higher than 1.5 can be predicted, e.g., for polymers with $b_0 = 1.0$ in good solvents of a = 0.8. The dependence of branching exponent b on the solvent quality according to eqs. (27)–(29) is shown in Figure 1 for randomly branched polymers: low density polyethylene (LDPE), polycarbonate (PC), and polystyrene (PS). The experimental results, taken from published papers, are also included. It should, however, be noted that experimental errors about 30% in determinations of b are not unusual.⁴ Nevertheless, it is evident that the experimental data agree with the predicted increase of b with the increase of solvent quality, i.e., $b > b_0$, contrary to the theoretical results from eq. (10). The most reliable values of b_0 are ranged from 0.5, as Zimm and Kilb found theoretically for star-branched polymers,² to about 1.0 found for comblike and randomly branched molecules. These limits as a function of solvent quality are shown in Figure 1. The values of b for randomly branched polymers with $b_0 = 0.55$ –0.60 for PS, $b_0 = 0.75$ –0.80 for PC and $b_0 = 0.8$ –1.0 for LDPE lies within these limits. Therefore, it can be concluded that the number of branch points obtained from the theoretical equations $\bar{g}_w = f(\bar{n}_{bw})$, derived by Zimm and Stockmayer¹ with the assumption that $b_0 = 1.5$ for the unperturbed conditions, cannot agree with experimental results.¹⁰ ### CONCLUDING REMARKS It has been found that solvents affect the branching degree G and the branching exponent b, while the branching degree g is independent of the solvent. The following relations have been found: $G < G_0$, $\overline{g}_x = \overline{g}_{x0}$, and $b > b_0$, as well as $\alpha_{\eta, \mathrm{br}} < \alpha_{\eta, \mathrm{lin}}$ and $\alpha_{s, \mathrm{br}} = \alpha_{s, \mathrm{lin}}$. Thus it has been found that the solvent effect of branching is more pronounced for α_{η} (hydrodynamic Fig. 1. Dependence of branching exponent b on the solvent quality. (— —) LDPE, eq. (29), with $b_0=0.92$ (lower line)⁸ and $b_0=1.00$ (upper line)^{4,13}; experimental points: (**①**) Small,⁴ according to Hama et al.¹³; (①) Arndt and Schröder⁸ with the values of a for good solvents given by Wulfert³⁴; (③) Casper et al.¹⁴; (①) Cote and Shida²⁷; (③) Völker and Luig³⁵; (—) PC, eq. (28) with b'=1.24 for $a'=0.82^{10}$ (×, lower line) and b'=1.31 for $a'=0.82^{33}$ (+, upper line); (— - —) randomly branched PS, eq. (29), with $b_0=0.55$ (lower line)¹⁰ and $b_0=0.60$ (upper line)²⁹; (**①**) Kurata et al.²⁹; (**۞**) Dobkowski, ¹⁰ according to the data of Masuda et al.³⁶; (- - -) model polystyrenes: PS(s) = star-branched: (∇) Meunier and Van Leemput¹⁵; (\triangle) Berry²²; PS(c) = comb-branched: (\square) Berry²²; (· · ·) (1) theoretical limit for star-branched polymers, $b_0=0.5$, eq. (29); (2) theoretical limit for comb-branched polymers, $b_0=1.0$ eq. (29); (3) theoretical values of b according to b=2-a, eq. (10). conditions) than that for α_s (static conditions of measurements). It can also be concluded that the ratio α_{η}/α_s depends on branching and $\alpha_{\eta}/\alpha_s)_{\rm br} < (\alpha_{\eta}/\alpha_s)_{\rm lin}$. Hence the ratio of Flory constants should be lower for branched molecules, i.e., $(\phi/\phi_0)_{\rm br} < (\phi/\phi_0)_{\rm lin}$. All these results, based on empirical relationships, should be checked by further experimental and theoretical works. #### References - 1. B. H. Zimm and W. H. Stockmayer, J. Chem. Phys., 17, 1301 (1949). - 2. B. H. Zimm and R. W. Kilb, J. Polym. Sci., 37, 19 (1959). - 3. G. C. Berry and E. F. Casassa, J. Polym. Sci., Macromol. Rev., 4, 1 (1970). - 4. P. A. Small, Adv. Polym. Sci., 18, 1 (1975). - 5. M. Hoffman, H. Krömer, and R. Kuhn, *Polymeranalytik*, Georg Thieme Verlag, Stuttgart, 1977. - 6. M. Bohdanecký, Makromol. Chem., 181, 1321 (1980). - 7. K. F. Arndt, Acta Polym., 31, 725 (1980). - 8. K. F. Arndt and E. Schröder, Plaste Kautsch., 29, 640 (1982). - 9. Z. Dobkowski, Eur. Polym. J., 17, 1131 (1981). - Z. Dobkowski, J. Appl. Polym. Sci., 28, 3105 (1983). - 11. T. A. Orofino and F. Wenger, J. Phys. Chem., 67, 566 (1963). - 12. W. W. Graessley and H. M. Mittelhauser, J. Polym. Sci., A-2, 5, 431 (1967). - 13. T. Hama, K. Yamaguchi, and T. Suzuki, Makromol. Chem., 155, 283 (1972). - 14. R. Casper, U. Biskup, H. Lange, and U. Pohl, Makromol. Chem., 177, 1111 (1976). #### DOBKOWSKI - 15. J. C. Meunier and R. Van Leemput, Makromol. Chem., 147, 191 (1971). - 16. J. C. Meunier and Z. Gallot, Makromol. Chem., 156, 117 (1972). - 17. J. Herz, M. Hert, and C. Strazielle, Makromol. Chem., 160, 213 (1972). - 18. J. E. L. Roovers and S. Bywater, Macromolecules, 7, 443 (1974). - 19. C. Strazielle and J. Herz, Eur. Polym. J., 13, 223 (1977). - 20. A. K. Kron and O. B. Ptitsyn, Vysokomol. Soed., 5, 397 (1963). - 21. G. C. Berry and T. A. Orofino, J. Chem. Phys., 40, 1614 (1964). - 22. G. C. Berry, J. Polym. Sci., A-2, 9, 687 (1971). - 23. M. Fixman, J. Chem. Phys., 23, 1656 (1955). - 24. J. G. Spiro, D. A. I. Goring, and C. A. Winkler, J. Phys. Chem. 68, 323 (1964). - 25. G. R. Wiliamson and A. Cervenka, Eur. Polym. J., 10, 295 (1974). - 26. K. Katsuura, J. Phys. Soc. Jpn., 15, 2310 (1960). - 27. J. A. Cote and M. Shida, J. Polym. Sci., A-2, 9, 421 (1971). - 28. D. Constantin, Eur. Polym. J., 13, 907 (1977). - 29. M. Kurata, M. Abe, M. Iwama, and M. Matsushima, Polym. J., 3, 729 (1972). - 30. Z. Dobkowski, Eur. Polym. J., 18, 563 (1982). - 31. Z. Dobkowski, IUPAC International Symposium on Macromolecules, Mainz, 17–21 Sept. 1979; *Preprints*, 3, 1440 (1979). - 32. Z. Dobkowski and J. Brzeziński, Eur. Polym. J., 17, 537 (1981). - 33. Z. Dobkowski, Eur. Polym. J., 18, 1051 (1982). - 34. C. Wulfert, Diplomarbeit, Merseburg, 1981; K. F. Arndt, private communication, 1983. - [cf. also K. F. Arndt, E. Schröder, and C. Wulfert, Acta Polym., 35, 273 (1984).] - 35. H. Völker and F. J. Luig, Angew. Makromol. Chem., 12, 43 (1970). - 36. T. Masuda, Y. Ohta, and S. Onogi, Polym. Prepr., 23(2), 40 (1982). Received October 12, 1983 Accepted April 15, 1984