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Synopsis 

The influence of solvents on the branching degrees G (the ratio of intrinsic viscosities) and 
g (the ratio of radii of gyration), and on the branching exponent b in equation G = gb has 
been estimated using the recently reported equations for branched polymers. The following 
relations have been found G < GO, gx = &,, and b > bo, where subscripts 0 and x denote the 
unperturbed (or theta) conditions and the type of average value for polydisperse polymers, 

’ respectively. Hence the expansion coefficients of branched and linear macromolecules are 
related by a,,br < a,,,in and aLb. = asfin. 

INTRODUCTION 
Branched polymers are usually characterized by the following branching 

degreesl-10 

and 

or 

for the same molecular weight (M> of branched (br) and linear (l id mole- 
cules, where [q], (r2), and (9) are the intrinsic viscosity, mean square end- 
to-end distance and mean square radius of gyration of macromolecules, 
respectively. The branching degrees G and g are related by 

G = $  (3) 

where b is the branching exponent dependent above all on the type of 
branching (star, comb, or random). The reported values of b are in the range 
from 0.5 (the theoretical value of Zimm and Kilb for starlike branching2) 
to 1.5 (the theoretical value derived with the assumption that the Flory 
constants for branched and linear macromolecules are equal, abr = +,in; cf. 
Ref. 5). 
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Since the theoretical considerations are based on the random flight sta- 
tistics of macromolecule, the unperturbed values should be taken for [q], 
(r2), or (8) in eqs. (1H3). Hence, the branching degrees Go and go for the 
unperturbed conditions can be defined as 

and 

or 

The theoretical unperturbed conditions for the second virial coefficient A z  
= 0 and the experimental theta conditions can be distinguished, as reviewed 
by Small.4 However, we assume that according to the Flory theory we have 

and 

g o  = g, (7) 

where subscripts 0 and 0 denote the unperturbed and theta conditions, 
respectively. In fact, the theta temperatures for linear and randomly 
branched polymers are very close or identical.6 

In considerations of influence of solvents on the branching degrees G and 
g, the expansion coefficients abr and alin for branched and linear macrom- 
olecules in solution should be taken into account. Then we have 

and 

or 

where a: = [~] / [q]~ ,  a? = (rz)/(1.2)o, a: = ( S ~ ) / ( S ~ ) ~ ,  and q,lin = q,lin. A lot 
of discrepancies exist, if the theoretical and experimental data are compared 
with eqs. (8) and (9). For example G > G," G = G0,6Js14 or G < G06.8J1J5- 
l9 have been reported, and g > g03~7~8~20-22 or g = g01232s25 have theoretically 
or experimentally been found, or have been assumed. 

It has also been reported that the exponent b in eq. (3) depends on the 
solvent, according to the following relation1*24.26-27: 
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b = 2 - ~  (10) 

where a is the Mark-Houwink exponent. Hence, it should be b < bo and 
bo = 1.5. Some authors, however, found that b > b, with b, about 0.5- 
l.0.4p8J5*22 Mostly, the constant value of b as independent of the solvent 
quality has been applied,4,5,24s28 which might be supported by some experi- 
mental reports, (cf. Ref. 29). 

It has recently been suggested'O that the influence of solvents on the 
branching parameters can be taken into account using the following general 
relationship for the average branching degree g: 

where fis the functionality of branching, i i b  is the average number of branch 
points, and x refers to the type of average values ( x  = n for number and 
x = w for weight averages). The exponent K in eq. (11) is given by the 
following relation',: 

where a is the Mark-Houwink exponent, b is the branching exponent de- 
fined by eq. (3), and atb is the branching exponent in the power dependence 
of the glass transition temperature T, on molecular weight, polydispersity, 
and b r a n ~ h i n g ? J ~ * ~ ~  

In the present work the above-mentioned suggestionlo is considered and 
the influence of solvents on G, g, and b is discussed. 

DISCUSSION 

Branching Degree g, 
The new branching degree g ,  based on gel permeation chromatography 

(GPC) and viscometric (VIS) measurements, has recently been d e f i ~ ~ e d ~ l , ~ ~  
as 

where Bv,G,GPC and are the viscosity average molecular weights deter- 
mined by GPC and VIS, respectively. This branching degree is related to 
the other branching parameters by the r e l a t i ~ n ~ . ~ ~  

G = g;" (14) 

where a is the Mark-Houwink exponent. Moreover, it has been found that 
the number average number of chain ends per molecule '23, is related to gu 
by 
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where a r b  is obtained from the 2"' measurements.30 
It is evident that the average number of chain ends per molecule 0, is 

a structural parameter independent of solvent. Since the value of a t b  is also 
independent of solvent, we have from eq. (15) that g, = const for different 
solvents. 

Branching Degree G 

It results immediately from eq. (14) that the branching degree G depends 
on the solvent quality, characterized by the Mark-Houwink exponent a. 
An example for polycarbonate is shown in Table I. It is evident that the 
highest values of G are obtained for the theta solvent, and G < Go. However, 
differences between values of G for different solvents are rather small (cf. 
Table I). This is probably the reason that the experimental values of G, 
obtained with some errors, are sometimes considered as solvent independ- 
ent.12J3 The results of Orofino and Wenger" that G/Go = 1.03 in benzene 
at 25°C and G/Go = 1.04 in toluene at 30°C for models of polystyrene are 
opposed by the same authors by G/Go = 0.97 in cyclohexane at 40°C. 

The relation G < Go has been confirmed by many other a ~ t h o r s . ~ ~ ~ J ~ ' ~  

Branching Degree g 

Combining eqs. (3) and (141, we obtain 

It has previously been f 0 u n d ~ J ~ 9 ~  that 

where a, and a m b G  are the exponents for M and for branching degree G, 
respectively, in the power dependence of the zero shear rate melt viscosity 
qo on molecular weight, polydispersity, and bran~hing,~JO,~ written as 

TABLE I 
Dependence of Branching Degree G on the Solvent Quality 

Branching degree G from eq. (14) 

a = 0.50 a = 0.60 a = 0.70 a = 0.76 a = 0.82 
Branching 

Sample degree g? 

DE16 1.02 0.990 0.988 0.986 0.985 0.984 
DEM-1 1.06 0.971 0.966 0.960 0.957 0.953 
DE2 1.10 0.953 0.944 0.935 0.930 0.925 
D E 4  1.20 0.913 0.896 0.880 0.871 0.861 
DE8 1.25 0.894 0.875 0.855 0.844 0.833 
DE13 1.29 0.880 0.858 0.837 0.824 0.812 
DE7 1.68 0.772 0.733 0.695 0.674 0.654 

*The experimental values of g,, are taken from Ref. 33. 
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If the branching degree g, instead of G is applied in eq. (18), the branching 
exponents are related by 

Then, combining eqs. (17) and (191, we obtain 

Thus the branching exponent b depends on the solvent through the Mark- 
Houwink exponent a; the values of a, and am& are solvent- independent. 
Combining eqs. (16) and (201, we have 

g = g,ambgu/am (21) 

Since all magnitudes on the right-hand side of eq. (21) are solvent-inde- 
pendent, the branching degree g is also independent of the solvent. Thus 

g = g o  (22) 

is found. 
This result contradicts the relations g > go or a*br > aslin [cf. eq. (9b)], 

calculated by Kron and Ptitsynm and Berry and Orofino.21 It seems that 
their assumptions made for theoretical calculations performed on model 
branched structures are not satisfied for the real branched polymers. On 
the other hand, the theoretical considerations of Fixmanm have led to the 
conclusion that branching has little effect on a, which implies a s , b r  = as,lin, 
and then g = g,. 

Moreover, starting from eq. (11) and substituting 

(cf. Ref. lo), we obtain 

independently ,of functionality of branching f: Then, combining eqs. (12) 
and (20), we find that 

Thus, K is the solvent-independent exponent, and, in turn, gX in eq. (24) is 
also independent of the solvent, i.e., 

It means that the branching degree g is independent of the solvent for 
monodisperse and polydisperse polymers, independently of functionality of 
branching. 
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Branching Fxponent b 

The branching exponent b depends on the solvent quality according to 
eq. (20), which can be written as 

b = D - a  (27) 

where the constant D = -a,,, I a,+, is independent of the solvent and can 
be determined from the zero-shear-rate melt viscosity dependence on mo- 
lecular weight, polydispersity, and branching'O [cf. eqs. (17H20)I. If the 
branching exponent b' for a given solvent characterized by the Mark-Hou- 
wink exponent a' is known, the values of b for other solvents can easily be 
found from 

b = (b'/a')a (28) 

If the known value is b' = bo for the unperturbed conditions, we have 

b = 2boa (29) 

Hence, values of b higher than 1.5 can be predicted, e.g., for polymers with 
b, = 1.0 in good solvents of a = 0.8. 

The dependence of branching exponent b on the solvent quality according 
to eqs. (27H29) is shown in Figure 1 for randomly branched polymers: low 
density polyethylene (LDPE), polycarbonate (PC), and polystyrene (PSI. The 
experimental results, taken from published papers, are also included. It 
should, however, be noted that experimental errors about 30% in deter- 
minations of b are not u n u ~ u a l . ~  Nevertheless, it is evident that the ex- 
perimental data agree with the predicted increase of b with the increase 
of solvent quality, i.e., b > bo, contrary to the theoretical results from eq. 
(10). 

The most reliable values of bo are ranged from 0.5, as Zimm and Kilb 
found theoretically for star-branched polymers> to about 1 .O found for comb- 
like and randomly branched molecules. These limits as a function of solvent 
quality are shown in Figure 1. The values of b for randomly branched 
polymers with bo = 0.55-0.60 for PS, bo = 0.75-0.80 for PC and bo = 0.8- 
1.0 for LDPE lies within these limits. 

Therefore, it can be concluded that the number of branch points obtained 
from the theoretical equations gw = f(Eb,), derived by Zimm and Stock- 
mayerl with the assumption that bo = 1.5 for the unperturbed conditions, 
cannot agree with experimental results.1° 

CONCLUDING REMARKS 
It has been found that solvents affect the branching degree G and the 

branching exponent b, while the branching degree g is independent of the 
solvent. The following relations have been found: G < Go, gx = gxo, and b 
> bo, as well as (X,,br < aq,lin and as,br = aalin. Thus it has been found that 
the solvent effect of branching is more pronounced for a, (hydrodynamic 
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0.5 a 1.0 

Fig. 1. Dependence of branching exponent b on the solvent quality. (- - -) LDPE, eq. 
(291, with b, = 0.92 (lower 1ine)s and b, = 1.00 (upper lineF3; experimental points (0) Small," 
according to Hama et al.13; (0) Arndt and Schrodel.8 with the values of a for good solvents 
given by WulferP; (8) Casper et a1.l4; (0) Cote and Shidan; (8) Volker and Luiga; (-) PC, 
eq. (28) with b = 1.24 for a' = 0.821° tx, lower line) and b = 1.31 for a' = 0.8233 (+, upper 
line); (- - -) randomly branched PS, eq. (29), with b, = 0.55 (lower line)', and b, = 0.60 
(upper line)%; Kurata e t  al.B; (0) Dobkowski,lo according to the data of Masuda et a1.%; 
(- - -) model polystyrenes: PS(s) = star-branched (V) Meunier and Van Leemput15; (A) Berry22; 
PS(c) = comb-branched: (0) Berry22; (. . .) (1) theoretical limit for star-branched polymers, bo 
= 0.5, eq. (29); (2) theoretical limit for comb-branched polymers, bo = 1.0 eq. (29); (3) theoretical 
values of b according to b = 2 - a, eq. (10). 

conditions) than that for a, (static conditions of measurements). It can also 
be concluded that the ratio a,,/as depends on branching and a,,/aJbr < (a,,/ 
aJlin. Hence the ratio of Flory constants should be lower for branched mol- 
ecules, i.e., < 

All these results, based on empirical relationships, should be checked by 
further experimental and theoretical works. 
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